ViennaSHE 1.3.0
Free open-source semiconductor device simulator using spherical harmonics expansions techniques.
Bibliography
[1]

H. Brooks. Scattering by Ionized Impurities in Semiconductors. Physical Review, 83:879–887, 1951.

[2]

R. Brunetti. A Many-Band Silicon Model for Hot-Electron Transport at High Energies. Solid State Electronics, 32:1663–1667, 1989.

[3]

C. Jungemann et al.. Stable Discretization of the Boltzmann Equation based on Spherical Harmonics, Box Integration, and a Maximum Entropy Dissipation Principle. Journal of Applied Physics, 100(2):024502, 2006.

[4]

DarwinPorts.

[5]

Fink.

[6]

S.-M. Hong and C. Jungemann. A Fully Coupled Scheme for a Boltzmann-Poisson Equation Solver Based on a Spherical Harmonics Expansion. Journal of Computational Electronics, 8:225–241, 2009.

[7]

S.-M. Hong, A.-T. Pham, and C. Jungemann. Deterministic Solvers for the Boltzmann Transport Equation. Springer, 2011.

[8]

C. Jacoboni and P. Lugli. The Monte Carlo Method for Semiconductor Device Simulation. Springer, 1989.

[9]

S. Jin, S.-M. Hong, and C. Jungemann. An Efficient Approach to Include Full-Band Effects in Deterministic Boltzmann Equation Solver Based on High-Order Spherical Harmonics Expansion. IEEE Transactions on Electron Devices, 58(5):1287 –1294, 2011.

[10]

A. Jüngel. Transport Equations for Semiconductors. Lecture Notes in Physics No. 773. Springer, Berlin, 2009.

[11]

C. Jungemann and B. Meinerzhagen. Hierarchical Device Simulation. Computational Microelectronics. Springer-Verlag, 2003.

[12]

K. Rahmat et al.. Simulation of Semiconductor Devices Using a Galerkin/Spherical Harmonic Expansion Approach to Solving the Coupled Poisson-Boltzmann System. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15(10):1181–1195, 1996.

[13]

E. O. Kane. Band Structure of Indium Antimonide. Journal of Physics and Chemistry of Solids, 1(4):249–261, 1957.

[14]

M. Lundstrom. Fundamentals of Carrier Transport. Cambridge University Press, second edition, 2000.

[15]

MacPorts.

[16]

P. A. Markowich, C. A. Ringhofer, and C. Schmeiser. Semiconductor Equations. Springer, Wien, New York, 1990.

[17]

G. Matz, S.-M. Hong, and C. Jungemann. Spherical Harmonics Expansion of the Conduction Band for Deterministic Simulation of SiGe HBTs with Full Band Effects. In Proceedings of SISPAD, pages 167–170, 2010.

[18]

Minimos NT.

[19]

S. E. Rauch, G. La Rosa, and F. J. Guarin. Role of E-E Scattering in the Enhancement of Channel Hot Carrier Degradation of Deep-Submicron NMOSFETs at High VGS Conditions . IEEE Transactions on Device and Materials Reliability, 1(2):113 –119, 2001.

[20]

K. Rupp, T. Grasser, and A. Jüngel. Parallel Preconditioning for Spherical Harmonics Expansions of the Boltzmann Transport Equation. In Proceedings of SISPAD, pages 147–150, 2011.

[21]

K. Rupp, C. Jungemann, M. Bina, A. Jüngel, and T. Grasser. Bipolar Spherical Harmonics Expansions of the Boltzmann Transport Equation. In Proceedings of SISPAD, pages 19–22, 2012.

[22]

K. Rupp, P.W. Lagger, and T. Grasser. Inclusion of Carrier-Carrier-Scattering Into Arbitrary-Order Spherical Harmonics Expansions of the Boltzmann Transport Equation. In Proceedings of the 15th International Workshop on Computational Electronics (IWCE 2012), 2012.

[23]

K. Rupp. Deterministic Numerical Solution of the Boltzmann Transport Equation. PhD thesis, Institute for Microelectronics, TU Wien, 2011.

[24]

D. Schroeder, D. Ventura, A. Gnudi, and G. Baccarani. Boundary Conditions for Spherical Harmonics Expansion of Boltzmann Equation. Electronics Letters, 28(11):995–996, 1992.

[25]

M. C. Vecchi and M. Rudan. Modeling Electron and Hole Transport with Full-Band Structure Effects by Means of the Spherical-Harmonics Expansion of the BTE. IEEE Transactions on Electron Devices, 45:230–238, 1998.

[26]

Xcode Developer Tools.